Upload files to "wyniki/silhouette_analysis"

This commit is contained in:
Michał Kasprowicz 2025-08-21 11:40:57 +00:00
parent a7459c449e
commit 1deed8c87e
2 changed files with 84 additions and 0 deletions

View File

@ -0,0 +1,52 @@
================================================================================
RAPORT ANALIZY SILHOUETTE SCORE
================================================================================
Data generowania: 2025-08-20 15:32:16
STATYSTYKI OGÓLNE:
----------------------------------------
Liczba testów: 31
Zakres Silhouette Score: -0.1334 - 0.1788
Średni Silhouette Score: 0.0716
Mediana Silhouette Score: 0.0698
Odchylenie standardowe: 0.0619
NAJLEPSZE WYNIKI WEDŁUG METODY:
----------------------------------------
PCA:
Najlepszy Silhouette Score: 0.1788
Parametry: n_components=6
Wyjaśniona wariancja: 0.0204
t-SNE:
Najlepszy Silhouette Score: 0.1245
Parametry: n_components=2, perplexity=30, lr=100
Wyjaśniona wariancja: nan
UMAP:
Najlepszy Silhouette Score: 0.0659
Parametry: n_components=10, n_neighbors=15, min_dist=0.1
Wyjaśniona wariancja: nan
================================================================================
REKOMENDACJE DLA KODU
================================================================================
Najlepszy ogólny wynik: 0.1788
Metoda: PCA
Parametry: n_components=6
Optymalne wartości według metody:
PCA: 0.1788
t-SNE: 0.1245
UMAP: 0.0659
Rekomendowana wartość dla OPTIMAL_SILHOUETTE_SCORE:
Najlepszy ogólny: 0.1788
Lub percentyl 90%: 0.1454
Lub percentyl 75%: 0.1089
================================================================================
KONIEC RAPORTU
================================================================================

View File

@ -0,0 +1,32 @@
method,n_components,silhouette_score,explained_variance,parameters
PCA,2,0.14904180882848342,0.008802910896059956,n_components=2
PCA,3,0.10221491226053686,0.012240117966724504,n_components=3
PCA,4,0.0773964303511667,0.015297012634861103,n_components=4
PCA,5,0.14543883098116248,0.01787716900465801,n_components=5
PCA,6,0.17877411724567227,0.020354480407368848,n_components=6
PCA,7,0.1755927691537697,0.022839179821124798,n_components=7
PCA,8,0.13591111808478173,0.025322954942548763,n_components=8
PCA,10,0.13322780149739052,0.030135259955215106,n_components=10
PCA,12,0.11560369927347439,0.034814435802109016,n_components=12
PCA,14,0.09415115596953195,0.03934776652611656,n_components=14
PCA,16,0.07706212705432497,0.04374803764763278,n_components=16
PCA,20,0.05145008147795156,0.05212480766322123,n_components=20
PCA,25,0.025907086416149434,0.061557460843560945,n_components=25
PCA,30,0.02451858042036104,0.06817089731967414,n_components=30
t-SNE,2,0.056376129388809204,,"n_components=2, perplexity=30, lr=50"
t-SNE,2,0.1245468333363533,,"n_components=2, perplexity=30, lr=100"
t-SNE,2,-0.014841650612652302,,"n_components=2, perplexity=30, lr=200"
t-SNE,2,0.09407472610473633,,"n_components=2, perplexity=50, lr=50"
t-SNE,2,0.08164428174495697,,"n_components=2, perplexity=50, lr=100"
t-SNE,2,0.08889631927013397,,"n_components=2, perplexity=50, lr=200"
t-SNE,3,0.054064903408288956,,"n_components=3, perplexity=30, lr=100"
t-SNE,3,0.06979238986968994,,"n_components=3, perplexity=50, lr=100"
UMAP,2,0.019399110227823257,,"n_components=2, n_neighbors=5, min_dist=0.1"
UMAP,2,0.03806114196777344,,"n_components=2, n_neighbors=15, min_dist=0.1"
UMAP,2,-0.13338957726955414,,"n_components=2, n_neighbors=30, min_dist=0.1"
UMAP,2,0.020280905067920685,,"n_components=2, n_neighbors=15, min_dist=0.5"
UMAP,2,0.021079763770103455,,"n_components=2, n_neighbors=15, min_dist=0.8"
UMAP,3,0.030341865494847298,,"n_components=3, n_neighbors=15, min_dist=0.1"
UMAP,5,0.052635736763477325,,"n_components=5, n_neighbors=15, min_dist=0.1"
UMAP,8,0.06430219113826752,,"n_components=8, n_neighbors=15, min_dist=0.1"
UMAP,10,0.06585823744535446,,"n_components=10, n_neighbors=15, min_dist=0.1"
1 method n_components silhouette_score explained_variance parameters
2 PCA 2 0.14904180882848342 0.008802910896059956 n_components=2
3 PCA 3 0.10221491226053686 0.012240117966724504 n_components=3
4 PCA 4 0.0773964303511667 0.015297012634861103 n_components=4
5 PCA 5 0.14543883098116248 0.01787716900465801 n_components=5
6 PCA 6 0.17877411724567227 0.020354480407368848 n_components=6
7 PCA 7 0.1755927691537697 0.022839179821124798 n_components=7
8 PCA 8 0.13591111808478173 0.025322954942548763 n_components=8
9 PCA 10 0.13322780149739052 0.030135259955215106 n_components=10
10 PCA 12 0.11560369927347439 0.034814435802109016 n_components=12
11 PCA 14 0.09415115596953195 0.03934776652611656 n_components=14
12 PCA 16 0.07706212705432497 0.04374803764763278 n_components=16
13 PCA 20 0.05145008147795156 0.05212480766322123 n_components=20
14 PCA 25 0.025907086416149434 0.061557460843560945 n_components=25
15 PCA 30 0.02451858042036104 0.06817089731967414 n_components=30
16 t-SNE 2 0.056376129388809204 n_components=2, perplexity=30, lr=50
17 t-SNE 2 0.1245468333363533 n_components=2, perplexity=30, lr=100
18 t-SNE 2 -0.014841650612652302 n_components=2, perplexity=30, lr=200
19 t-SNE 2 0.09407472610473633 n_components=2, perplexity=50, lr=50
20 t-SNE 2 0.08164428174495697 n_components=2, perplexity=50, lr=100
21 t-SNE 2 0.08889631927013397 n_components=2, perplexity=50, lr=200
22 t-SNE 3 0.054064903408288956 n_components=3, perplexity=30, lr=100
23 t-SNE 3 0.06979238986968994 n_components=3, perplexity=50, lr=100
24 UMAP 2 0.019399110227823257 n_components=2, n_neighbors=5, min_dist=0.1
25 UMAP 2 0.03806114196777344 n_components=2, n_neighbors=15, min_dist=0.1
26 UMAP 2 -0.13338957726955414 n_components=2, n_neighbors=30, min_dist=0.1
27 UMAP 2 0.020280905067920685 n_components=2, n_neighbors=15, min_dist=0.5
28 UMAP 2 0.021079763770103455 n_components=2, n_neighbors=15, min_dist=0.8
29 UMAP 3 0.030341865494847298 n_components=3, n_neighbors=15, min_dist=0.1
30 UMAP 5 0.052635736763477325 n_components=5, n_neighbors=15, min_dist=0.1
31 UMAP 8 0.06430219113826752 n_components=8, n_neighbors=15, min_dist=0.1
32 UMAP 10 0.06585823744535446 n_components=10, n_neighbors=15, min_dist=0.1