Update README.md

This commit is contained in:
Michał Kasprowicz 2025-09-16 18:53:21 +00:00
parent 38686a553b
commit e78bce39b2
1 changed files with 10 additions and 15 deletions

View File

@ -22,8 +22,8 @@ This project implements a **comprehensive comparison of quantum and classical SV
## Project Structure ## Project Structure
``` ```
├── 📁 Data and Experiments ├── 📁 Data
│ ├── qsvm.py # Main experiment controller │ ├── qsvm.py # Main experiment controller
│ ├── qsvm1_zz.py # Experiment 1: ZZ Feature Maps │ ├── qsvm1_zz.py # Experiment 1: ZZ Feature Maps
│ ├── qsvm2_pauli.py # Experiment 2: Pauli Feature Maps │ ├── qsvm2_pauli.py # Experiment 2: Pauli Feature Maps
│ ├── qsvm3_z.py # Experiment 3: Z Feature Maps │ ├── qsvm3_z.py # Experiment 3: Z Feature Maps
@ -36,15 +36,18 @@ This project implements a **comprehensive comparison of quantum and classical SV
├── 📁 Results ├── 📁 Results
└── 📁 Configuration ├── 📁 Configuration
├── environment.yml # Conda environment │ ├── environment.yml # Conda environment
├── requirements.txt # Python dependencies │ └── requirements.txt # Python dependencies
└── README.md # This file
└── 📁 Side experiments
├── experiments.py # Experiments file
└── run_experiment.sh # Shell script to run cloud computing using multi thread option
``` ```
## Side Experiments Overview ## Side Experiments Overview
This directory contains **side experiments** that extend the main quantum brain tumor classification project. The experiments focus on **analyzing the impact of genetic data complexity** and **different gene subsets** on the effectiveness of quantum SVM algorithms. The directory contains **side experiments** that extend the main quantum brain tumor classification project. The experiments focus on **analyzing the impact of genetic data complexity** and **different gene subsets** on the effectiveness of quantum SVM algorithms.
### Main Research Objectives ### Main Research Objectives
@ -290,14 +293,6 @@ PCA_COMPONENTS = 12
python analyze_results.py python analyze_results.py
``` ```
### Generated Reports
- **Noise robustness plots** (additive vs substitutional)
- **Summary tables** (CSV + LaTeX)
- **Feature map ranking** by robustness
- **Heatmaps** of all results
- **Final reports** with conclusions
### Key Results ### Key Results
Analysis of **81 experiments** shows: Analysis of **81 experiments** shows: